Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Carbohydr Polym ; 312: 120756, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2309426

ABSTRACT

In this study, we developed a new filtering bioaerogel based on linear polyvinyl alcohol (PVA) and the cationic derivative of chitosan (N-[(2-hydroxy-3-trimethylamine) propyl] chitosan chloride, HTCC) with a potential antiviral application. A strong intermolecular network architecture was formed thanks to the introduction of linear PVA chains, which can efficiently interpenetrate the glutaraldehyde(GA)-crosslinked HTCC chains. The morphology of the obtained structures was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The aerogels and modified polymers' elemental composition (including the chemical environment) was determined using X-ray photoelectron spectroscopy (XPS). New aerogels with more than twice as much developed micro- and mesopore space and BET-specific surface area were obtained concerning the starting sample chitosan aerogel crosslinked by glutaraldehyde (Chit/GA). The results obtained from the XPS analysis showed the presence of cationic 3-trimethylammonium groups on the surface of the aerogel, which can interact with viral capsid proteins. No cytotoxic effect of HTCC/GA/PVA aerogel was also observed on fibroblast cells of the NIH3T3 line. Furthermore, the HTCC/GA/PVA aerogel has been shown that efficiently traps mouse hepatitis virus (MHV) from suspension. The presented concept of aerogel filters for virus capture based on modified chitosan and polyvinyl alcohol has a high application potential.


Subject(s)
Chitosan , Viruses , Animals , Mice , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Glutaral/chemistry , NIH 3T3 Cells
2.
Water Res ; 227: 119342, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2106149

ABSTRACT

Glutaraldehyde and didecyldimethylammonium bromide (GD) is a disinfectant widely used to prevent African swine fever (ASF) in livestock farms. However, the effect of residual GD on the activated sludge microbial ecology of receiving wastewater treatment plants (WWTPs) remains largely unknown. In this study, seven simulated systems were established to research the effects of GD on WWTPs and reveal the underlying mechanisms of microecological responses to GD at different concentrations. Both the nitrogen and carbon removal rates decreased with increasing GD concentrations, and nitrogen metabolism was inhibited more obviously, but the inhibition weakened with increasing stress duration. Microorganisms activated their SoxRS systems to promote ATP synthesis and electron transfer to support the hydrolysis and efflux of GD by producing a small number of ROS when exposed to GD at less than 1 mg/L. The overproduction of ROS led to a decrease of antioxidant and nitrogen removal enzyme activities, and upregulation of the porin gene increased the risk of GD entering the intracellular space upon exposure to GD at concentrations higher than 1 mg/L. Some denitrifiers survived via resistance and their basic capabilities of sugar metabolism and nitrogen assimilation. Notably, low concentrations of disinfectants could promote vertical and horizontal transfer of multiple resistance genes, especially aminoglycosides, among microorganisms, which might increase not only the adaptation capability of denitrifiers but also the risk to ecological systems. Therefore, the risks of disinfectants targeting ASF on ecology and health as well as the effects of disinfectant residuals from the COVID-19 epidemic should receive more attention.


Subject(s)
African Swine Fever , COVID-19 , Disinfectants , Water Purification , Swine , Animals , Sewage , Disinfectants/pharmacology , Glutaral/pharmacology , Livestock , Reactive Oxygen Species , Nitrogen
3.
PLoS One ; 17(10): e0275488, 2022.
Article in English | MEDLINE | ID: covidwho-2054385

ABSTRACT

Glutaraldehyde, a germicide for reprocessing endoscopes that is important for hygiene in the clinic, might be hazardous to humans. Electrolyzed acid water (EAW) has a broad anti-microbial spectrum and safety profile and might be a glutaraldehyde alternative. We sought to assess EAW disinfection of flexible endoscopes in clinical otorhinolaryngological settings and its in vitro inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and bacteria commonly isolated in otorhinolaryngology. Ninety endoscopes were tested for bacterial contamination before and after endoscope disinfection with EAW. The species and strains of bacteria were studied. The in vitro inactivation of bacteria and SARS-CoV-2 by EAW was investigated to determine the efficacy of endoscope disinfection. More than 20 colony-forming units of bacteria at one or more sampling sites were detected in 75/90 microbiological cultures of samples from clinically used endoscopes (83.3%). The most common genus detected was Staphylococcus followed by Cutibacterium and Corynebacterium at all sites including the ears, noses, and throats. In the in vitro study, more than 107 CFU/mL of all bacterial species examined were reduced to below the detection limit (<10 CFU/mL) within 30 s after contact with EAW. When SARS-CoV-2 was treated with a 99-fold volume of EAW, the initial viral titer (> 105 PFU) was decreased to less than 5 PFU. Effective inactivation of SARS-CoV-2 was also observed with a 19:1 ratio of EAW to the virus. EAW effectively reprocessed flexible endoscopes contributing to infection control in medical institutions in the era of the coronavirus disease 2019 pandemic.


Subject(s)
COVID-19 , Disinfection , Bacteria , COVID-19/prevention & control , Cross-Sectional Studies , Endoscopes/microbiology , Endoscopes, Gastrointestinal/microbiology , Equipment Contamination/prevention & control , Glutaral , Humans , SARS-CoV-2 , Water
4.
Biosensors (Basel) ; 12(8)2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-2023154

ABSTRACT

Currently, several biosensors are reported to confirm the absence/presence of an abnormal level of specific human biomarkers in research laboratories. Unfortunately, public marketing and/or pharmacy accessibility are not yet possible for many bodily fluid biomarkers. The questions are numerous, starting from the preparation of the substrates, the wet/dry form of recognizing the (bio)ligands, the exposure time, and the choice of the running buffers. In this context, for the first time, the present overview summarizes the pre-functionalization of standard and nanostructured solid/flexible supports with cysteamine (Cys) and glutaraldehyde (GA) chemicals for robust protein immobilization and detection of biomarkers in body fluids (serum, saliva, and urine) using three transductions: piezoelectrical, electrochemical, and optical, respectively. Thus, the reader can easily access and compare step-by-step conjugate protocols published over the past 10 years. In conclusion, Cys/GA chemistry seems widely used for electrochemical sensing applications with different types of recorded signals, either current, potential, or impedance. On the other hand, piezoelectric detection via quartz crystal microbalance (QCM) and optical detection by surface plasmon resonance (LSPR)/surface-enhanced Raman spectroscopy (SERS) are ultrasensitive platforms and very good candidates for the miniaturization of medical devices in the near future.


Subject(s)
Biosensing Techniques , Cysteamine , Biomarkers , Biosensing Techniques/methods , Cysteamine/chemistry , Glutaral , Humans , Quartz Crystal Microbalance Techniques , Surface Plasmon Resonance
5.
Analyst ; 147(20): 4462-4472, 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2016862

ABSTRACT

This article describes three novel electrochemical biosensing platforms developed to determine the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) spike antigen protein: glutaraldehyde, SARS-CoV-2 spike antibody and bovine serum albumin; N,N-dicyclohexyl carbodiimide/4-(dimethylamino)pyridine functionalised SARS-CoV-2 spike antibody and bovine serum albumin; and 1-ethyl-3-[3-dimethylaminopropyl]-carbodiimide hydrochloride/N-hydroxysuccinimide functionalised SARS-CoV-2 spike antibody and bovine serum albumin modified cysteine-based gold-flower modified glassy carbon electrodes. Two of the produced biosensors having better signals were used to determine the SARS-CoV-2 spike antigen in spiked-saliva and clinical samples containing gargle and mouthwash liquids and characterised using cyclic voltammetry, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The study provides highly significant information in terms of how coupling reagents ought to be used with linkers consisting of both amine and carboxylic acid terminals (i.e. cysteine). The electrochemical cathodic signals based on antibody-antigen protein interactions at approximately -270 mV were evaluated as a response using square wave voltammetry, and they increased in proportion to the SARS-CoV-2 spike antigen. The limit of detection values were 0.93 and 46.3 ag mL-1 in a linear range from 1 ag mL-1 to 100 pg mL-1 and from 100 ag mL-1 to 10 ng mL-1 and the recovery and relative standard deviation values for spiked-saliva samples were 99.50% and 99.40%, and 3.87% and 0.13% for BSA/S-AB/GluAl/Cys/Au/GCE and BSA/S-AB/f-Cys/Au/GCE, respectively. The results showed that both biosensing platforms could be selectively and accurately used to diagnose COVID-19 in RT-PCR-approved clinical samples.


Subject(s)
Biosensing Techniques , COVID-19 , Amines , Antibodies, Viral , Biosensing Techniques/methods , COVID-19/diagnosis , Carbodiimides , Carbon , Carboxylic Acids , Cysteine , Electrochemical Techniques/methods , Electrodes , Glutaral , Gold , Humans , Mouthwashes , SARS-CoV-2 , Serum Albumin, Bovine/chemistry
6.
ScientificWorldJournal ; 2021: 9342748, 2021.
Article in English | MEDLINE | ID: covidwho-1495720

ABSTRACT

BACKGROUND: Recently, an outbreak of a novel human coronavirus SARS-CoV-2 has become a world health concern leading to severe respiratory tract infections in humans. Virus transmission occurs through person-to-person contact, respiratory droplets, and contaminated hands or surfaces. Accordingly, we aim at reviewing the literature on all information available about the persistence of coronaviruses, including human and animal coronaviruses, on inanimate surfaces and inactivation strategies with biocides employed for chemical and physical disinfection. METHOD: A comprehensive search was systematically conducted in main databases from 1998 to 2020 to identify various viral disinfectants associated with HCoV and methods for control and prevention of this newly emerged virus. RESULTS: The analysis of 62 studies shows that human coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV), canine coronavirus (CCV), transmissible gastroenteritis virus (TGEV), and mouse hepatitis virus (MHV) can be efficiently inactivated by physical and chemical disinfectants at different concentrations (70, 80, 85, and 95%) of 2-propanol (70 and 80%) in less than or equal to 60 s and 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Additionally, glutaraldehyde (0.5-2%), formaldehyde (0.7-1%), and povidone-iodine (0.1-0.75%) could readily inactivate coronaviruses. Moreover, dry heat at 56°C, ultraviolet light dose of 0.2 to 140 J/cm2, and gamma irradiation could effectively inactivate coronavirus. The WHO recommends the use of 0.1% sodium hypochlorite solution or an ethanol-based disinfectant with an ethanol concentration between 62% and 71%. CONCLUSION: The results of the present study can help researchers, policymakers, health decision makers, and people perceive and take the correct measures to control and prevent further transmission of COVID-19. Prevention and decontamination will be the main ways to stop the ongoing outbreak of COVID-19.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , SARS-CoV-2 , Virus Inactivation/drug effects , 2-Propanol/pharmacology , Animals , COVID-19/virology , Coronavirus, Canine/drug effects , Disinfection/methods , Ethanol/pharmacology , Formaldehyde/pharmacology , Gamma Rays , Glutaral/pharmacology , Hot Temperature , Humans , Hydrogen Peroxide/pharmacology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Murine hepatitis virus/drug effects , Povidone-Iodine/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Sodium Hypochlorite/pharmacology , Transmissible gastroenteritis virus/drug effects , Ultraviolet Rays
7.
Bioessays ; 43(6): e2000312, 2021 06.
Article in English | MEDLINE | ID: covidwho-1184571

ABSTRACT

Biocidal agents such as formaldehyde and glutaraldehyde are able to inactivate several coronaviruses including SARS-CoV-2. In this article, an insight into one mechanism for the inactivation of these viruses by those two agents is presented, based on analysis of previous observations during electron microscopic examination of several members of the orthocoronavirinae subfamily, including the new virus SARS-CoV-2. This inactivation is proposed to occur through Schiff base reaction-induced conformational changes in the spike glycoprotein leading to its disruption or breakage, which can prevent binding of the virus to cellular receptors. Also, a new prophylactic and therapeutic measure against SARS-CoV-2 using acetoacetate is proposed, suggesting that it could similarly break the viral spike through Schiff base reaction with lysines of the spike protein. This measure needs to be confirmed experimentally before consideration. In addition, a new line of research is proposed to help find a broad-spectrum antivirus against several members of this subfamily.


Subject(s)
Disinfectants/pharmacology , Ketone Bodies/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Disinfectants/chemistry , Formaldehyde/chemistry , Formaldehyde/pharmacology , Glutaral/chemistry , Glutaral/pharmacology , Humans , Ketone Bodies/chemistry , Ketone Bodies/metabolism , Ketosis/etiology , Ketosis/virology , SARS-CoV-2/pathogenicity , Virion/drug effects , Virion/pathogenicity
8.
Curr Pain Headache Rep ; 25(4): 21, 2021 Mar 11.
Article in English | MEDLINE | ID: covidwho-1126627

ABSTRACT

PURPOSE OF REVIEW: This review aims to provide relevant, aggregate information about a variety of disinfectants and antiseptics, along with potential utility and limitations. While not exhaustive, this review's goal is to add to the body of literature available on this topic and give interventional providers and practitioners an additional resource to consider when performing procedures. RECENT FINDINGS: In the current SARS-CoV2 epidemiological environment, infection control and costs associated with healthcare-associated infections (HAIs) are of paramount importance. Even before the onset of SARS-CoV2, HAIs affected nearly 2million patients a year in the USA and resulted in nearly 90,000 deaths, all of which resulted in a cost to hospitals ranging from US$28 billion to 45 billion. The onset SARS-CoV2, though not spread by an airborne route, has heightened infection control protocols in hospitals and, as such, cast a renewed focus on disinfectants and their utility across different settings and organisms. The aim of this review is to provide a comprehensive overview of disinfectants used in the inpatient setting.


Subject(s)
Cross Infection/prevention & control , Disinfectants , Chlorine Compounds , Ethanol , Formaldehyde , Glutaral , Humans , Hydrogen Peroxide , Iodophors , Oxides , Peracetic Acid , Phenol , Povidone-Iodine , Quaternary Ammonium Compounds , Sodium Hypochlorite , Triazines
9.
Arh Hig Rada Toksikol ; 71(3): 261-264, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-874402

ABSTRACT

All COVID-19 prevention strategies include regular use of surface disinfectants and hand sanitisers. As these measures took hold in Croatia, the Croatian Poison Control Centre started receiving phone calls from the general public and healthcare workers, which prompted us to investigate whether the risk of suspected/symptomatic poisonings with disinfectants and sanitisers really increased. To that end we compared their frequency and characteristics in the first half of 2019 and 2020. Cases of exposures to disinfectants doubled in the first half of 2020 (41 vs 21 cases in 2019), and exposure to sanitisers increased about nine times (46 vs 5 cases in 2019). In 2020, the most common ingredients of disinfectants and sanitisers involved in poisoning incidents were hypochlorite/glutaraldehyde, and ethanol/isopropyl alcohol, respectively. Exposures to disinfectants were recorded mostly in adults (56 %) as accidental (78 %) through ingestion or inhalation (86 %). Fortunately, most callers were asymptomatic (people called for advice because they were concerned), but nearly half reported mild gastrointestinal or respiratory irritation, and in one case severe symptoms were reported (gastrointestinal corrosive injury). Reports of exposure to hand sanitisers highlighted preschool children as the most vulnerable group. Accidental exposure through ingestion dominated, but, again, only mild symptoms (gastrointestinal or eye irritation) developed in one third of the cases. These preliminary findings, however limited, confirm that increased availability and use of disinfectants and sanitisers significantly increased the risk of poisoning, particularly in preschool children through accidental ingestion of hand sanitisers. We therefore believe that epidemiological recommendations for COVID-19 prevention should include warnings informing the general public of the risks of poisoning with surface and hand disinfectants in particular.


Subject(s)
2-Propanol/toxicity , Coronavirus Infections/prevention & control , Disinfectants/toxicity , Ethanol/toxicity , Glutaral/toxicity , Hand Sanitizers/toxicity , Hypochlorous Acid/toxicity , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Croatia/epidemiology , Drug-Related Side Effects and Adverse Reactions/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL